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Abstract. In the present paper we prove that every k-dimensional Cartesian

product of Kingman convolutions can be embedded into a k-dimensional sym-

metric convolution (k=1, 2, . . . ) and obtain an analogue of the Cramér-Lévy
theorem for multi-dimensional Rayleigh distributions. A new and more gen-

eral class of multi-dimensional Rayleigh distributions and associated higher

dimensional Bessel processes are introduced and studied. This class of pro-
cesses inherits the well-known characteristics of Brownian motions: They are

independent stationary ”increments” processes with continuous sample paths.
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1. Introduction, Notations and Prelimilaries

In probability theory and statistics, the Rayleigh distribution is a continuous
probability distribution which is widely used to model events that occur in differ-
ent fields such as medicine, social and natural sciences. A multivariate Rayleigh
distribution is the probability distribution of a vector of norms of random Gaussian
vectors. The purpose of this paper, is to introduce and study the fractional indexes
multivariate Rayleigh distributions via the Cartesian product of Kingman convo-
lutions and, in particular, to prove an analogue of the Lévy-Cramér theorem for
multivariate Rayleigh distributions. We begin with a brief review of the Kingman
convolution ∗1,δ as follows. Let P(R+) denotes the set of all probability measures
(p.m.’s) on the positive half-line R+. Put, for each continuous bounded function f
on R+,

(1)
∫ ∞

0

f(x)µ ∗1,δ ν(dx) =
Γ(s+ 1)
√
πΓ(s+ 1

2 )∫ ∞
0

∫ ∞
0

∫ 1

−1

f((x2 + 2uxy + y2)1/2)(1− u2)s−1/2µ(dx)ν(dy)du,

where µ and ν ∈ P(R+) and δ = 2(s + 1) ≥ 1 (cf. Kingman [7] and Urbanik
[17]). The convolution algebra (P, ∗1,δ) is the most important example of Urbanik
convolution algebras (cf Urbanik [17]). In language of the Urbanik convolution
algebras, the characteristic measure, say σs, of the Kingman convolution has the
Rayleigh density

(2) dσs(y) =
2(s+ 1)s+1

Γ(s+ 1)
y2s+1 exp (−(s+ 1)y2)dy

Date: June 30, 2009.

1



2 THU VAN NGUYEN

with the characteristic exponent κ = 2 and the kernel Λs
(3) Λs(x) = Γ(s+ 1)Js(x)/(1/2x)s,

where Js(x) denotes the Bessel function of the first kind,

(4) Js(x) := Σ∞k=0

(−1)k(x/2)ν+2k

k!Γ(ν + k + 1)
.

It is known (cf. Kingman [7], Theorem 1), that the kernel Λs itself is an ordinary
characteristic function (ch.f.) of a symmetric p.m., say Fs, defined on the interval
[-1,1]. Thus, if θs denotes a random variable (r.v.) with distribution Fs then for
each t ∈ R+,

(5) Λs(t) = E exp (itθs) =
∫ 1

−1

exp (itx)dFs(x).

Suppose that X is a nonnegative r.v. with distribution µ ∈ P and X is independent
of θs. The radial characteristic function (rad.ch.f.) of µ, denoted by µ̂(t), is defined
by

(6) µ̂(t) = E exp (itXθs) =
∫ ∞

0

Λs(tx)µ(dx),

for every t ∈ R+. The characteristic measure of the Kingman convolution ∗1,δ,
denoted by σs, has the Maxwell density function

(7)
dσs(x)
dx

=
2(s+ 1)s+1

Γ(s+ 1)
x2s+1exp{−(s+ 1)x2}, (0 < x <∞).

and the rad.ch.f.

(8) σ̂s(t) = exp{−t2/4(s+ 1)}.

Example 1. The case δ = 1 (s = − 1
2 ) the Kingman convolution reduces to the

symmetric convolution ∗1,1 with Λ− 1
2
(x) = cosx and κ = 2, and the characteristic

measure σ−1/2 has the density function

dσ− 1
2
(x)

dx
= (π)−

1
2 exp(−x2/2)

which is the density of a symmetric Gaussian distribution induced on R+.

2. Cartesian product of Kingman convolutions

Denote by R+k, k = 1, 2, ... the k-dimensional nonnegative cone of Rk and
P(R+k) the class of all p.m.’s on R+k equipped with the weak convergence. In the
sequel, we will denote the multidimensional vectors and random vectors (r.vec.’s)
and their distributions by bold face letters. For each point z of any set Z let
δz denote the Dirac measure (the unit mass) at the point z. In particular, if
x = (x1, x2, · · · , xk) ∈ Rk+, then

(9) δx = δx1 × δx2 × . . .× δxk
, (k times),

where the sign ” × ” denotes the Cartesian product of measures. We put, for
x = (x1, · · · , xk) and y = (y1, y2, · · · , yk) ∈ R+k,

(10) δx©s,k δy = {δx1 ◦s δy1} × {δx2 ◦s δy2} × · · · × {δxk
◦s δyk

}, (k times),

here and somewhere below for the sake of simplicity we denote the Kingman con-
volution operation ∗1,δ, δ = 2(s + 1) ≥ 1 simply by ◦s, s ≥ − !

2 . Since convex
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combinations of p.m.’s of the form (9) are dense in P(R+k) the relation (10) can
be extended to arbitrary p.m.’s F and G ∈ P(R+k). Namely, we put

(11) F©s,k G =
∫∫
R+k

δx©s,k δyF(dx)G(dy)

which means that for each continuous bounded function φ defined on R+k

(12)
∫

R+k

φ(z)F©s,k G(dz) =
∫∫
R+k

{∫
R+k

φ(z)δx©s,k δy(dz)
}
F(dx)G(dy).

In the sequel, the binary operation ©s,k will be called the k-times Cartesian prod-
uct of Kingman convolutions and the pair (P(R+k),©s,k) will be called the k-
dimensional Kingman convolution algebra. It is easy to show that the binary op-
eration ©s,k is continuous in the weak topology which together with (1) and (11)
implies the following theorem.

Theorem 1. The pair (P(R+k),©s,k) is a commutative topological semigroup with
δ0 as the unit element. Moreover, the operation ©s,k is distributive w.r.t. convex
combinations of p.m.’s in P(R+k).

For every G ∈ P(R+k) the k-dimensional rad.ch.f. Ĝ(t), t = (t1, t2, · · · tk) ∈
R+k, is defined by

(13) Ĝ(t) =
∫

R+k

k∏
j=1

Λs(tjxj)G(dx),

where x = (x1, x2, · · ·xk) ∈ R+k. Let Θs = {θs,1, θs,2, · · · , θs,k}, where θs,j are inde-
pendent r.v.’s with the same distribution Fs. Next, assume that X = {X1, X2, ..., Xk}
is a k-dimensional r.vec. with distribution G and X is independent of Θs. We put

(14) [Θs,X] = {θs,1X1, θs,2X2, ..., θs,kXk}.
Then, the following formula is equivalent to (13) (cf. [13])

(15) Ĝ(t) = Eei<t,[Θs,X]>, t ∈ R+k.

The Reader is referred to Corollary 2.1, Theorems 2.3 & 2.4 [13] for the principal
properties of the above rad.ch.f. Given s ≥ −1/2 define a map Hs,k : P(R+k) →
P(Rk) by

(16) Hs,k(G) =
∫

R+k

(Tc1Fs)× (Tc2Fs)× . . .× (Tck
Fs)G(dc),

here and in the sequel, for a distribution F of a r.vec. X and a real number c we
denote by TcF the distribution of cX. Let us denote by P̃s,k(R+k) the sub-class of
P(Rk) consisted of all symmetric p.m.’s defined by the right-hand side of (16). By
virtue of (13)-(16) it is easy to prove the following theorem.

Theorem 2. The set P̃s,k(R+k) is closed w.r.t. the weak convergence and the
ordinary convolution ∗ and the following equation holds

(17) Ĝ(t) = F(Hs,k(G))(t) t ∈ R+k

where F(K) denotes the ordinary characteristic function (Fourier transform) of a
p.m. K. Therefore, for any G and K ∈ R+k

(18) Hs,k(G) ∗Hs,k(K) = Hs,k(G©s,k K)
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and the map Hs,k commutes with convex combinations of distributions and scale
changes Tc, c > 0. Moreover,

(19) Hs,k(Σs,k) = N(0, I)

where Σs,k denotes the k-dimensional Rayleigh distribution (Definition 3) and N(0, I)
is the standard normal distribution on Rk. Consequently, Every Kingman convo-
lution algebra

(
P(R+k),©s,k

)
is representable in the ordinary convolution algebra(

P̃s,k(R+k), ?
)

and the map Hs,k stands for a homeomorphism.

Proof. First we prove the equation (17) by taking the Fourier transform of the
right-hand side of (16). We have, for t ∈ Rk,

F(Hs,k(G))(t) =
∫

Rk

Πk
j=1 cos(tjxj)Hs,k(G)dx

=
∫

Rk

∫
R+k

Πk
j=1 cos(tjxj)(TcjFs(dx)G(dc)(20)

=
∫

R+k

k∏
j=1

Λs(tjcj)G(dc) = Ĝ(t)

which implies that the set set P̃s,k(R+k) is closed w.r.t. the weak convergence and
the ordinary convolution ∗ and, moreover the equations (18) and (19) hold. �

Definition 1. A p.m. F ∈ P(R+k) is called ©s,k−infinitely divisible (©s,k−ID),
if for every m=1, 2, . . . there exists Fm ∈ P(R+k) such that

(21) F = Fm©s,k Fm©s,k . . .©s,k Fm (m times).

Definition 2. F is called stable, if for any positive numbers a and b there exists a
positive number c such that

(22) TaF©s,k TbF = TcF

By virtue of Theorem 2 it follows that the following theorem holds true.

Theorem 3. A p.m. G is ©s,k −ID, resp. stable if and only if Hs,k(G) is ID,
resp. stable, in the usual sense.

The following lemma will be used in the representation of ©s,k − ID, k ≥ 2.

Lemma 1. (i) For every t ≥ 0

(23) lim
x→0

1− Λs(tx)
x2

= lim
x→0

1− Eeitθ

x2
=
t2

2
.

(ii) For any x = (x0, x1, · · · , xk) and t = (t0, t1, · · · , tk) ∈ Rk+1, k = 1, 2, ...

(24) limρ→0
1−

∏k
r=0 Λs(trxr)
ρ2

=
1
2

Σkr=0λ
2
r(Arg(x))t2r,

where ρ = ||x||, Arg(x) = x
||x|| , and λr(Arg(x)), r = 0, 1, ..., k are given by

(25) λr(Arg(x)) =


cosφ r = 0,
sinφ sinφ1 · · · sinφr−1 cosφr 1 ≤ r ≤ k − 2,
sinφ sinφ1... sinφk−2 cosψ r = k − 1,
sinφ sinφ1... sinφk−2 sinψ r = k,

where 0 ≤ ψ, φ, φr ≤ π/2, r = 1, 2, ..., k−2 are angles of x appearing its polar form.
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The following theorem gives a representation of rad.ch.f.’s of ©s,k−ID distribu-
tions (see [13] ), Theorem 2.6 for the proof).

Theorem 4. A p.m. µ ∈ ID(©s,k) if and only if there exist a σ-finite measure
M (a Lévy’s measure) on R+k with the property that M(0) = 0,M is finite outside
every neighborhood of 0 and

(26)
∫

R+k

‖x‖2

1 + ‖x‖2
M(dx) <∞

and for each t = (t1, ..., tk) ∈ R+k

(27) − log µ̂(t) =
∫

R+k

{1−
k∏
j=1

Λs(tjxj)}
1 + ‖x‖2

‖x‖2
M(dx),

where, at the origin 0, the integrand on the right-hand side of (27) is assumed to
be

(28) Σkj=1λ
2
j t

2
j = lim‖x‖→0{1−

k∏
j=1

Λs(tjxj)}
1 + ‖x‖2

‖x‖2

for nonnegative λj , j = 1, 2, ..., k given by equations (25) in Lemma 1. In particular,
if M = 0, then µ becomes a Rayleighian distribution with the rad.ch.f (see definition
3)

(29) − log µ̂(t) =
1
2

k∑
j=1

λ2
j t

2
j , t ∈ R+k,

for some nonnegative λj , j = 1, ..., k.
Moreover, the representation (27) is unique.

An immediate consequence of the above theorem is the following:

Corollary 1. Each distribution µ ∈ ID(©s,k) is uniquely determined by the
pair [M,λλλ], where M is a Levy’s measure on R+k such that M(0) = 0, M is
finite outsite every neighbourhood of 0 and the condition (26) is satisfied and
λλλ := {λ1, λ2, · · ·λk} ∈ R+k is a vector of nonnegative numbers appearing in (29).
Consequently, one can write µ ≡ [M,λλλ].

In particular, if M is zero measure then µ = [λλλ] becomes a Rayleighian p.m. on
R+k as defined as follows:

Definition 3. A k-dimensional distribution, say ΣΣΣs,k, is called a Rayleigh distri-
bution, if

(30) ΣΣΣs,k = σs × σs × · · · × σs (k times).

Further, a distribution F ∈ P(R+k) is called a Rayleighian distribution if there exist
nonnegative numbers λr, r = 1, 2 · · · k such that

(31) F = {Tλ1σs} × {Tλ2σs} × . . .× {Tλk
σs}.

It is evident that every Rayleigh distribution is a Rayleighian distribution. More-
over, every Rayleighian distribution is©s,k−ID. By virtue of (7 ) and (30) it follows
that the k-dimensional Rayleigh density is given by

(32) g(x) = Πk
j=1

2k(s+ 1)k(s+1)

Γk(s+ 1)
x2s+1
j exp{−(s+ 1)||x||2},
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where x = (x1, x2, . . . , xk) ∈ R+k and the corresponding rad.ch.f. is given by

(33) Σ̂s,k(t) = Exp(−|t|2/4(s+ 1)), t ∈ R+k.

Finally, the rad.ch.f. of a Rayleighian distribution F on R+k is given by

(34) F̂(t) = Exp(−1
2

k∑
j=1

λ2
j t

2
j )

where λj , j = 1, 2, . . . , k are some nonnegative numbers.

3. An analogue of the Lévy-Cramér Theorem in k-dimensional
Kingman convolution algebras

We say that a distribution F on Rk has dimension m, 1 ≤ m ≤ k, if m is the
dimension of the smallest hyper-plane which contains the support of F. The follow-
ing theorem can be regarded as a version of the Lévy-Cramér Theorem for multi-
dimensional Kingman convolution.The case k=1 was proved by Urbanik ([18]).

Theorem 5. Suppose that Gi ∈ P(R+k), i = 1, 2 and

(35) Σs,k = G©s,k K.

Then, G and K are both Rayleighian distributions fufilling the condition that there
exist nonnegative numbers λr and γr, r = 1, 2, . . . , k such that the number of non-
zero coefficients λ′rs and γ′rs are equal to the dimensions of G and K, respectively,
and moreover,

(36) λ2
r + γ2

r = 1, r = 1, 2, ..., k

and

(37) G = Tλ1σs × Tλ2σs × . . .× Tλk
σs

and

(38) K = Tγ1σs × Tγ2σs × . . .× Tγk
σs.

Proof. Suppose that the equation (35) holds. Using the map Hs,k we have

Hs,k(Σs,k) = Hs,k(G) ∗Hs,k(K)

which implies that
N(0, I) = Hs,k(G) ∗Hs,k(K).

By the well-known Lévy-Cramér Theorem on Rk (cf. Linnik and Ostrovskii [9]),
that they are both symmetric Gaussian distributions on Rk. Consequently, they
must be of the form (37) and (38) and the coefficients λ′rs and γ′rs satisfy the
above stated conditions. �

4. Remarks on Rk.-valued Bessel processes

Since every Rayleigh distribution Σs,k is ID the semigroup Σts,k, t ≥ 0, where the
power is taken in the sense of the Kingman convolution ©s,k, induces a homoge-
neous Markov process Bt, t ≥ 0 which is the Bessel process fulfiling the condition
that

(39) Σs,k
d= B1.
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By virtue of (17) it follows that every Bessel process is an ordinary symmetric Lévy
process which together with the fact that the sample functions of the Bessel process
are continuous with (P.1) implies that it is a Brownian motion on R+k.
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